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Synchronization of chaotic erbium-doped fiber dual-ring lasers by using the method of another
chaotic system to drive them

Rong Wang* and Ke Shen
Optical Physics Department, Changchun Institute of Optics and Fine Mechanics, ChangChun 130022, China

~Received 12 July 2001; published 17 December 2001!

A method of chaotic synchronization is presented in this paper that uses the chaotic output of one system to
drive two other identical chaotic systems. The criterion is defined that, when the maximum conditional
Lyapunov exponents~MCLE’s! of the two systems are negative, the two systems can be synchronized to each
other. As a possible application we numerically investigated the synchronization of chaotic erbium-doped fiber
dual-ring laser systems. Numerical calculation shows that when driven by another chaotic system, if the two
identical systems are in chaos and their MCLE’s, are negative, they can go into chaotic synchronization
whether or not they were in chaotic states previously. Simultaneously, we find that the states of the two systems
vary with that of the driving system. When the driving system is in different periodic states, the two systems
can still retain synchronization and go into corresponding different periodic states.
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I. INTRODUCTION

The investigation of chaotic synchronization has attrac
much attention in the last ten years due to the possibility
practical applications of this fundamental phenomenon. T
concept of synchronized chaos was first introduced
Pecora and Carroll@1# ~so it is called the PC method!. They
showed theoretically that the chaotic dynamics of two s
tems can be synchronized. Using an electric circuit, they a
demonstrated experimentally the chaos synchronization
their concept@2#. In their scheme the synchronization
achieved in the following way. A nonlinear chaotic system
separated into two subsystems: one of which is stable,
other is not. Then the stable subsystem is replicated to
duce a nonautonomous second subsystem driven by the
responding signals in the parent~master! system. This
method shows that the two subsystems become asymp
cally synchronized if all the conditional Lyapunov exponen
of the replicated subsystem are negative. For many cha
dynamical systems, however, it is not easy in practice
separate the system.

In this paper we propose a method of chaotic synchro
zation based on the PC method. In this method we use t
systems instead of the master and two subsystems in th
method, among which one is in a chaotic state~called the
driving system!, and the other two are identical~called the
driven systems!. Then we use the chaotic output of the dri
ing system to drive the two driven systems with the sa
driving stiffness. By adjusting the driving stiffness proper
when the two driven systems are in chaos and their m
mum conditional Lyapunov exponents MCLE’s are negati
the two driven systems can synchronize asymptotic
whether or not they were in chaos previously.

Here we apply this method to erbium-doped fiber du
ring lasers and investigate their chaotic synchronizati
Erbium-doped fiber lasers have recently received a great
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of attention because of their importance in optical commu
cations: Their wavelength~about 1.54ms) is in the third
window of optical communications. As well as applicatio
in devices, the dynamics of erbium-doped fiber lasers w
various kinds of cavity have been investigated@3–11#. More
recently, there have been reports on their chaotic synchr
zation @12–15# using the method of the master-slave or m
tual coupling synchronization. Here we use this method
investigate the conditions for chaotic or periodic synchro
zation in erbium-doped fiber dual-ring lasers.

II. A SCHEME OF SYNCHRONIZATION

An erbium-doped fiber dual-ring laser is made up of tw
coupled fiber ring lasers. The scheme is shown in Fig. 1.
we know@11#, the two erbium-doped fiber lasers are each
a steady state. When they are coupled to each other thro
the directional coupler, they can go into periodic states. W
changes of some parameter, the system can develop c
following a period-doubling route. To obtain chaos synch
nization of such systems, we use the proposed method
put forward the scheme shown in Fig. 2.

In the scheme,S1 is the driving system andS2,S3 are
two identical driven systems. Through a directional coup
some of the output ofS1 in ring a ~Fig. 1! is coupled to the

FIG. 1. Erbium-doped fiber dual-ring laser system.I pa ,I pb ,
pump light; DC, directional coupler; WDM, wavelength divisio
multiplexer.
©2001 The American Physical Society07-1
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RONG WANG AND KE SHEN PHYSICAL REVIEW E65 016207
two driven systems in ringa and realizes the driving. Be
causeS1 is not affected byS2 andS3, its dynamic equations
keep their original form and are as follows@11#:

Ė1a52k1a~E1a1h0E1b!1g1aE1aD1a , ~1!

Ė1b52k1b~E1b2h0E1a!1g1bE1bD1b , ~2!

Ḋ1a52~11I 1pa1uE1au2!D1a1I 1pa21, ~3!

Ḋ1b52~11I 1pb1uE1bu2!D1b1I 1pb21. ~4!

Here,E1a andE1b are the lasing fields ofS1 in ringsa and
b, respectively;uE1au2 and uE1bu2 represent the lasing inten
sities ofS1 in ringsa andb, respectively;D1a andD1b are
the population inversions ofS1 in rings a and b, respec-
tively; k1a andk1b are the products oft2 and the decay rate
of S1 in ringsa andb, respectively;g1a andg1b are, respec-

FIG. 2. Synchronization scheme:E2a will synchronize toE3a .
S1,S2,S3 are chaotic erbium-doped fiber dual-ring lasers.
01620
tively, the products oft2 and the gain coefficient ofS1 in
rings a and b; t2 is the lifetime of the population of the
lasing upper level in erbium.I 1pa and I 1pb are the pump
intensities in the respective fiber ring lasers andh0 is the
coupling coefficient of the directional coupler DC at th
wavelengthl51.54 mm. In the dynamic equations the tim
is normalized tot2.

For the driven systemsS2 andS3, the dynamics are in-
fluenced by the driving systemS1. In this scheme the outpu
of S1 is coupled toS2 andS3 through a directional couple
and a wavelength division multiplexer~WDM!. The WDM is
used to input the pump light and output the laser and

FIG. 3. The MCLE of the driven systems changes with t
driving stiffness,lMCLE8 vsg1m .
s

e

FIG. 4. Synchronized chao
for g1m50.08. ~a!,~b!,~d!,~e! The
strange attractor in the plan
E2a ,E2b and E3a ,E3b before and
after driving. ~c!,~f! The projec-
tion of the flow onto theE2a-E3a

plane before and after driving.
7-2
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directional coupler is used to couple the output ofS1 into S2
andS3. When the optical field in one fiber is coupled to t
others through the WDM or directional coupler, there is
phase changes ofp/2. So the fields coupled toS2 andS3
have a phase changes ofp. Under this condition, the dy
namic equations ofS2 andS3 are changed as follows:

Ėma52kma~Ema1h0Emb1g1mE1a!1gmaEmaDma ,
~5!

Ėmb52kmb~Emb2h0Ema!1gmbEmbDmb , ~6!

Ḋma52~11I mpa1uEmau2!Dma1I mpa21, ~7!

Ḋmb52~11I mpb1uEmbu2!Dmb1I mpb21. ~8!

Here m52,3, represent the two driven systemsS2,S3, re-
spectively;g1m5h13h2 is the driving stiffness, whereh1
and h2 are the coupling coefficents of the WDM and th
coupler at the wavelengthl51.54 mm; Ema and Emb are
the lasing fields ofS2 or S3 in ringsa andb, respectively;
uEmau2 and uEmbu2 represent the lasing intensities ofS2 and
S3, respectively;Dma andDmb are the population inversion
of S2 or S3 in ringsa andb, respectively;kma andkmb are
the products oft2 and the decay rate ofS2 or S3 in ringsa
andb, respectively;gma andgmb are, respectively, the prod
ucts oft2 and the gain coefficient ofS2 or S3 in ringsa and
b; I mpa and I mpb are the pump intensities in the correspon
ing fiber ring laser. The meanings of the other symbols
the same as above. Again, in the dynamic equations the
is normalized to the lifetime of the lasing upper levelt2.

III. NUMERICAL SIMULATION

To eclucidate the process of chaos synchronization,
numerically analyze erbium-doped fiber dual-ring lasers
two cases. One is that the driving system remains in ch
and the driven systems are in various states. The other is
the driven systems remain in chaos and the driving syste
in various states.

FIG. 5. The minimum driving stiffness changes with the sta
of the driven systems,g1mvs gmb .
01620
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First, we keep the driving systemS1 in chaos and adjus
the states of the two driven systemsS2 andS3. As we know,
the state of the erbium-doped fiber dual-ring laser can
changed by adjusting the gain coefficient of ringb @11# or the
decay rates of ringa and ringb @15#. Here we change the
states of the two driven systems by adjustinggmb . In the
numerical simulation,S1 is in chaos and we take the param
eters as@11# k1a ,k1b51000; g1a510 500; g1b54800; h0
50.2; I 1pa ,I 1pb54; t2510 ms. ForS2 andS3, in order to
make them in various states, we letgmb vary from 4200 to
5200 and the other parameters are@11# kma ,kmb51000;
gma510 500;h050.2; I mpa,I mpb54. Now we simulate the
whole system in the scheme by using the fourth or
Runge-Kutta-Gill method in double precision. The numeric
results show that, whether the systemsS2,S3 are in periodic
or chaotic states previously, when they are driven byS1 with
g1m more than 0.001, they can go into chaos. Under th
conditions, as long as their MCLE’s are negative, the t
driven systemsS2 andS3 can go into chaotic synchroniza
tion, that is, E2a5E3a , E2b5E3b . Now we take gmb
54600. With this, the MCLE’s of the two identical system

s

FIG. 6. The bifurcation diagram of the synchronized system
~a! E2avs g1b ; ~b! E2avs k1a (k1a5k1b).
7-3
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RONG WANG AND KE SHEN PHYSICAL REVIEW E65 016207
S2 andS3 are 1.3631022 if they are not driven. This show
that S2 andS3 were in chaos previously. Then we calcula
the MCLE’s of the systemsS2 andS3 with the driving sys-
tem to drive them. Figure 3 gives the relation between
MCLE (lMCLE8s) and g1m . From it, we find that when the
driving stiffnessg1m is more than 0.035, the MCLE’s ar
negative. This means that the two driven systems can
chronize with each other. The synchronization phenome
can be clearly seen in Fig. 4 in whichg1m50.08. Figures
4~a!, 4~b!, 4~c! and 4~d!, 4~e!, 4~f! show the attractors ofS2
and S3 and their relations before and after they are driv
These figures show that the attractors of the driven syst
are influenced by the driving system. In addition, if the sta
of the driven systems vary, the minimum ofg1m must vary
with them in order to retain the chaotic synchronizatio
These relations are shown in Fig. 5.

Secondly, we investigate the synchronization under
conditions thatS2,S3 are in chaos andS1 is in various
states. Here we take the parameters ofS2 andS3 as those of
S1 in the first case, and the parameters ofS1 are those ofS2
andS3 in the first case. The numerical results show that
states ofS2 andS3 vary with that ofS1, and the biggerg1m
is, the more they are affected. Wheng1m is more than 0.088
their states are the same as that ofS1, including periodic,
chaotic, and developed chaotic motion. Moreover, they
still remain synchronized. These results show that we
obtain synchronized systems with various states by chan
the state of the driving system. Figures 6~a! and 6~b! respec-
tively show the changes in the synchronized states via tha
F
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S1 caused by adjustingg1b and k1a ,k1b (k1a5k1b) with
g1m50.09.

Based on the results above, we extended the chaotic
chronization of two systems to more systems. Here,
present one example. In this case, there are three driven
tems as well as the driving system and their parameters
the same as above but with different initial conditions. T
numerical results show that the three driven systems can
synchronize if their MCLE’s are negative. This is significa
in realizing secure communications via chaos synchron
tion.

IV. CONCLUSION

In conclusion, we have demonstrated a method of cha
synchronization by chaotic driving. Using the MCLE as c
terion, we give the conditions for realizing chaotic synchr
nization. This method has the following advantages.~1! It
can make several systems synchronized.~2! By changing the
state of the driving system, we can obtain periodic or chao
synchronized systems.~3! Compared with the PC method,
is more practical since it does not require the system to
divided. Using this method, we present a scheme of cha
synchronization in erbium-doped fiber dual-ring lasers. N
merical results verified these conclusions. At the same ti
we give the bifurcation diagram of the systems synchroni
via the driving system. These results have significance
practice.
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